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Since the physical and chemical properties of inorganic nano- [aBiRge, SYgEi M E b o Areat]
particles are determined by their primary structures, such as size, ',E?* ; p”iu
shape, and crystallinity,the control of such structures is quite ~ » £E%5°¢ Ssws > \w ke |
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and an application of regularly ordered nanoparticles to nano- ::‘c' 35005 (00 €85 Cm“‘“
devices When a nanopatrticle consists of two chemical species, -'.:"tvﬁ'._;;; 'l_'::g_‘_ _‘o:__._‘:.,.-': s I "
the distribution of chemical species inside the particle becomes e "5e 838 “pe  o20%0 5o, L AR
another determinant for its properties. Such nanoparticles are of ; T
standing interest since they can exhibit cataljtielectronic? g PaLy
optical?> and magneti-¢ properties distinct from those of nano- St B f\‘ ok
particles comprising the corresponding single-chemical species. In “Ja-u vy T

50 60
Enargy (ka'f)

general, the nanoparticles with two chemical species obtained by ) )

the conventional chemical syntheses have either chemically dis-F9ure 1. (a) TEM image of CoPd nanoacorns (inset, enlarged TEM
dered alloy or coreshell layered structure, both of which are image). (b) EDX spectra on bright and dark regions of nanoacorns and

Pr o y ) Y . ! dark nanoparticles marked by circles in (a). (c) Schematic illustration of

isotropic in the light of phase segregation. If other phase-segregatedcopd nanoacorn.

structures could be spontaneously formed, we would obtain another _

factor to control the properties of nanoparticles. Through the 2. = b

systematic syntheses of nanoparticles composed of both 3d-

transition metal and noble metal for their magnetic stuéiias, b Sk 2“;‘?“"";
found that the anisotropically phase-segregated CoPd sulfide b S, . ;z'as‘gzé-,
«3.50 (220)

nanoparticles were spontaneously formed, in which one phase is
made up of cobalt sulfide and another of palladium sulfide. These
nanoparticles are named “nanoacorns” from their shape and . . ;
difference in TEM contrast. Here we report the synthesis, structural o pus,
analysis, and preliminary formation mechanism of CoPd nano-
acorns.

The CoPd nanoacorns were synthesized by the reduction of Co-
(acac)-2H,0 and Pd(acag)with 1,2-hexadecanediol in di-octyl . L ]
ether in the presence of 1-octadecanethigs®E) (see Supporting E NT:egreer I 0w ST
Information for details). Figure 1a shows a low magnification TEM ) ) ) .
image of the resulting GS-protected nanoparticles. The acorn- 56re2 () Holresshtion TEW nage of CoPd ranoscors () Optcal

shaped particles made up of both bright and dark phases havingyithin the rectangular region in (). (c,d) XRD patterns of CoPd nanoacoms
the average size of14 nm (length)x 10 nm (width) and the Co/ and PdSx nanoparticles.

Pd atomic ratio of 40/60 were predominantly observed together
with a minor fragment of spherical dark particles. Figure 1b presents
nanospot energy-dispersive X-ray (EDX) spectra on the light and
dark phases of nanoparticles marked by circles in the enlarged TEM
image in Figure la. The EDX results of 2.84 keV (Pg,2.99

¥ w28 (222)
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of the C@Ss (110) plane (see Figure S1). To support this result,
we attempted to synthesize the §Sp nanoparticles in a similar
fashion, but in vain, meaning that the Co phase grows in the
presence of Pd phase, as described later. Then the powder X-ray

. diffraction (XRD) measurements were carried out. Figure 2c shows
keV (Pd Ly), 6.93 keV (CO_ K) and 7.65 keV (Co ) conflrmed the XRD pattern of CoPd nanoacorns, in which several unidentifi-
that the cobalt and palladium atoms were located at the light and

dark phases, respectively. At this stage, we predicted that the CoPolable sharp (@ = 29.9, 47.5, 52.2, 60.9, 61.7), shoulder (2

sed the briaht cobalt and dark palladi h = 39.4), and broad diffraction peaks§2= 36.4°) were observed.
nanoacorns comprised the bright cobalt and dark paliadium phaseSq g ghoyder and five sharp peaks are almost precisely attributed
as shown in Figure 1c.

. . to the C@Ss crystalline phasé,which supports the above result.
In the next step, we investigated the crystal structure of CoPd . - . .
o . From the detailed HRTEM study (see Figure S2), the interfacial
nanoacorns. Figure 2a presents a HRTEM image of CoPd nano- y( g )

. lattice plane of C hase was concluded to be the (001) plane,
acorns where the Co phases are crystalline, whereas the Pd phas P gsg P . (o1 p
; . ; e reason remaining to be determined.
seem to be amorphous. The optical diffractogram (Figure 2b)

. . . - Contrary to the cobalt case, thegS-protected Pd nanoparticles
obtained by the Fou_rler.trar!sform of .th? crystalline Co phase_wnhln were formed in a polydisperse state (see Figure S3), and their XRD
the rectangular region in Figure 2a is in good agreement with that

patterns (Figure 2d) also indicate the amorphous phase with the
T Present address: Graduate School of Pure and Applied Sciences, UniversitySImH"’.Ir brpad diffraction peak Cen.tere.d a 2= 36.8 similar to
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan. that in Figure 2c. Recently, Whitesides and co-workers have
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Figure 4. Schematic illustration of the speculated formation mechanism
Figure 3. TEM images of CoPd nanoacorns taken for monitoring their 0f the CoPd nanoacorns.
growth process: (a) after 15 min heating, (b) after 20 min heating, (c) after

30 min heating, (d) after 40 min heating. atoms and supply them to the cobalt phases. Consequently, we

reported that the unknown palladium sulfide species are generated!lUstrate schematically the formation mechanism of the CoPd

with the thickness of 2 nm at the palladium film surface after ~nanoacorns in Figure 4. _ o

the spontaneous cleavage of the-€ bond of self-assembled Thg results reported here provide the novel potentlallty of
alkanethiolate8 Tsukuda and co-workers have also demonstrated chemical methods to control the phase-segregation manner of
the formation of the palladium sulfide interlayer at the surface of Nanoparticles. The syntheses of various nanoacorns are in progress
Pd nanoparticles prepared in the presence @8B1° Since our to provide the sort of firm new mechanistic insights into the
reactions have been carried out over 200t is easily speculated processes underlying nanostructure formation more generally.

that the C-S bond of GgS is cleaved at the surface of metallic Acknowledgment. We thank Y. Tsuchiya and T. Shimotsu for
palladium to liberate the sulfur atom, which transforms the Pd measuring HRTEM-EDX. This work was supported partly by
nanoparticles to the palladium sulfide ones with an unknown Grant-in-Aid for Young Scientists (A) from MEXT, Japan (No.

amorphous binary phase (Pd:S ~2 from EDX quantitative 15681009), and also by PRESTO, JST (T.T.).
analyses, see Table S1). The S(2p) XPS spectrum of the nanoacorns

indicates the presence of sulfurs in boths&oand Pd$ phases Supporting Information Available: Synthetic procedure of CoPd
and those of @S present at the surface of the nanoacorns, nanoacoms, optical diffractogram of §g(110) plane, HRTEM images
respectively (see Figure S4). These results led us to the conclusiorPf n@noacorns, TEM image of PdSanoparticles, EDX and XPS results
that the CoPd nanoacorns comprise both unknown amorphoys Pdsef hanoacorns, TEM images ofs& and GS-protected nanoacorns,
and crystalline CgSs phases. In this regard, the thiols are requisite and_ UV-vis spectral chan_ge of nanoacorn solutions. This material is
to the formation of nanoacorns. In fact, the sulfur-free protective available free of charge via the Internet at http://pubs.acs.org.
ligands do not give the nanoacorn formation, but other thiols, such
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